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In recent years, the fourth industrial revolution has garnered global 

interest. This new revolution has given rise to numerous concepts, one 

of which is predictive maintenance. By implementing machine-

learning techniques to monitor real-time operational data, predictive 

maintenance can be achieved for industrial machines. It analyzes 

sensor data to predict equipment failures early and reduce downtime, 

ultimately optimizing scheduled maintenance. The aim of this study 

was to investigate the advancements in academic failure prediction. 

Predicting failures requires considering concepts like design support 

systems and predictive maintenance decision support systems. The 

research gap was identified by reviewing the existing literature and 

exploring optimization strategies through the integration of predictive 

maintenance in the industrial environment of smart factories. 
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Introduction 

Predictive maintenance, often referred to as "condition-based maintenance," "on-line monitoring," or 

"risk-based maintenance," has a long history and has been the subject of numerous current projects. This 
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technique involves proactive machinery monitoring to prevent future problems. From the initial visual 

inspection method to automated systems utilizing advanced signal processing technologies such as 

machine learning, pattern recognition, fuzzy logic, and neural networks, predictive maintenance has come 

a long way. Automated technology is a viable solution in many fields when human senses are no longer 

able to detect and receive crucial information from equipment, particularly motors [7]. 

Predictive maintenance, when combined with integrated sensors, can significantly reduce the need for 

unnecessary equipment replacements, minimize machine downtime, identify the source of the problem, 

and ultimately reduce costs while boosting productivity. To achieve this, preventive maintenance (PdM) 

and scheduled maintenance (SM) work together to schedule maintenance tasks in advance to avoid 

machine breakdowns. Unlike traditional preventative maintenance, PdM programs rely on data gathered 

from sensors and analysis techniques [8, 9]. Over 70% of the driven electrical loads in the manufacturing 

sector use induction motors [10]. Several studies have been conducted in this field to better assess the 

fitness of these motors. The most common repair issue and the most frequent cause of motor failure are 

bearing failures [10]. 

In recent years, the importance of system maintenance has increased for enhancing the continuity and 

productivity of products. System maintenance can take various forms, including proactive, planned, 

reactive, and predictive maintenance [11]. Reactive maintenance only deals with issues that arise when a 

system fails or breaks down. Once the fault is identified, the necessary repairs are made. Conversely, 

planned maintenance is intended to conduct regular inspections and maintenance tasks at predetermined 

intervals to extend the system's life and lower repair costs. Predictive maintenance (PdM) aims to 

maximize maintenance intervals, decrease downtime, and increase system reliability by using advanced 

analytics to evaluate data from multiple sensors and predict when a system is likely to fail. 

PdM has advanced significantly in recent years due to the development of low-cost sensors and real-

time monitoring systems that have enabled the collection of big data. These advances, combined with 

skilled algorithms and human expertise, have contributed to significant advancements in PdM. 

New multivariate statistical models and expert algorithms are currently being developed to reduce 

labor costs and increase prediction accuracy [12]. Advanced models, algorithms, and expertise based on 

AI enable robotic systems to achieve greater autonomy. Moreover, AI-based PdM can lower costs while 

increasing effectiveness and security. Therefore, researchers have primarily focused on AI theories and 

methods to enhance the adaptability and autonomy of robotic systems in complex and dynamic industrial 

scenarios [13]. 
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The Prognostics and Health Management (PHM) system uses a combination of unsupervised and 

supervised learning techniques, including total AI methods, clustering, reinforcement learning, and 

classification/regression to process the large amounts of data collected through real-time condition 

monitoring. The implementation of Deep Neural Networks (DNNs) covering Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks (CNNs) has 

improved the reliability of predictions in the PHM system. These networks are trained on raw sensor data, 

such as images or time-series data, to identify, detect, or predict variations in a system. 

Various PHM applications have successfully implemented machine learning (ML) methods, such as 

Support Vector Machines (SVMs), Random Forests (RF), decision trees (DT), and feedforward neural 

networks (FNNs) for classifying sensor data. To improve data quality, data-cleaning techniques can be 

used to handle missing values and efficiently remove noise. Efficient data management through secure 

and reliable communication can also improve performance. 

There are several fields in which computer-based technology is combined with human-centered 

approaches, including decision algorithms, electric automobiles, electric control, power, and energy, 

predictive analysis, and cellular and security networks. Some examples of literature in these fields are 

decision algorithms [18-22], electric automobiles [23-24], electric control, power, and energy [24-28], 

predictive analysis [29-31], and cellular and security networks [32-36]. 

Literature Review 

The use of condition monitoring and Predictive Maintenance (PdM) can significantly increase system 

dependability and prevent financial losses from unplanned motor failures, particularly for electric motors 

and other types of equipment. This research proposes an RF-based ML framework for PdM, which was 

evaluated in an actual industrial scenario using a machine learning approach for data collection and 

analysis, and compared to the evaluation of a simulation tool. The Azure Cloud Architecture's Analysis of 

Data Tool gathers data from several sensors, PLCs in the machine, and communication channels, and the 

results showed the correct behavior of the approach in predicting different machine states. 

Machine learning (ML) is a revolutionary technique with applications in various fields, including 

autonomics, production and manufacturing, image processing, medicine, and aviation. An automated 

monitoring system and routine maintenance are crucial for the smooth operation of a machine. Our goal 

is to address the deficiency of an automation system that provides the accuracy rate of a manufacturing 

machine at a specific moment in time, as well as the lack of recording of crucial energy meter values 
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needed to generate a power report at a specific period in an automation system to handle production 

concerns. In this study, we explain how ML approaches are applied to forecast the precision of an 

operational production machine. We employed supervised ML for binary decision trees using the CART 

method and retrieved data through the Modbus communication protocol using an RS232 to RS485 

converter for the power report. 

The use of Internet of Things (IoT) technology in industrial settings to gather valuable information by 

analyzing data collected from various sensors is known as Industrial Internet of Things (IIoT). Predictive 

modeling requires a date-time element, which is commonly included in the data gathered by machines 

[3]. This study examines the application of ARIMA prediction using time-series data from multiple 

sensors on a slitting machine to identify potential failures and quality issues in order to improve the 

manufacturing process as a whole. Machine learning (ML) is a crucial component of IIoT and has 

applications in quality control and management, maintenance cost reduction, and industrial process 

optimization. 

In highly automated production processes, minimizing unplanned machine downtime due to faulty 

machine components is crucial. Bearings inside machine tools, such as grinding machines, are vital 

components. Research on bearing defect detection has increased significantly over the past decade [4]. 

The success of ML concepts has also contributed to the increased interest in this topic. However, there is 

currently no single, widely applicable technique for predictive bearing maintenance. Most research has 

only focused on one type of bearing at a time. This study provides an overview of the main techniques for 

evaluating bearing defects in grinding machines, highlighting two main aspects of the analysis. 

The widespread adoption of Industry 4.0 has led to the increased use of Predictive Maintenance (PdM) 

techniques, smart systems, and machine learning in artificial intelligence (AI) across various industries. 

These methods aim to optimize the performance of industrial equipment by minimizing downtime and 

enhancing the utilization of its components. The digital transformation towards Industry 4.0 has enabled 

the collection of vast amounts of operational and process condition data from multiple pieces of 

equipment, which can be used to develop automated fault detection systems that help to extend the life of 

these components. 

In recent years, there has been a growing interest in the application of PdM in smart manufacturing in 

Industry 4.0, and machine learning approaches have shown significant promise. The implementation of 

PdM can benefit every industrial industry by enhancing asset management and ensuring the optimal 

performance of expensive and sophisticated machinery. In the manufacturing sector, businesses are 
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increasingly adopting good systems, PdM, routine maintenance procedures, and machine learning 

approaches to maintain the condition of their equipment. 

The collection of large volumes of operational and process condition data from multiple pieces of 

equipment can be used to develop an automatic fault detection system that can determine how to reduce 

the time it takes for a fault to occur, increase the rate at which a part is utilized, and extend its useful life. 

The properties of Industry 4.0 that generate products require PdM to ensure sustainable smart 

manufacturing. 

Research Methodology 

The following sentence has been rephrased to improve its language quality and clarity while 

maintaining its original meaning: 

The PdM data is collected and saved in a time series from the IoT cloud. There are two ways in which 

the data is stored: 

Primary Storage: The data is stored in an online IoT cloud data lake, where it has been preprocessed 

and analyzed using the available information. 

Backup Record: A freely accessible csv-formatted dataset from Kaggle was utilized for data analysis 

and ML model development. 

To ensure secure data transfer, the IoT cloud provides a reliable communication route. After the 

collection of prediction maintenance data from the IoT cloud, data processing can be performed to handle 

missing data and noise. Data transformation is carried out by normalizing and standardizing the data 

values to enhance the performance of the model. This is followed by supervised learning using machine 

learning techniques such as RF, SVM, KNN, and decision tree. 

Data cleaning is necessary to remove unwanted or unnecessary items from the raw data. This is 

achieved through techniques such as outlier identification to control the ingestion of noisy values and 

missing data. 

During data transformation, data normalization is performed to scale the data values into the desired 

range, and new attributes are created from known attributes. 

Finally, data processing is carried out using ML techniques, with values such as pressure, volume, and 

temperature used to predict the data using RF, SVM, and decision trees. 
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The PdM system is built upon four main components: a user interface screen, industrial machinery, an 

IoT cloud for storage, and a Thing-speaking interface. The edge device collected data from the industrial 

machine, which was then stored in the Thing Speech Cloud Analytic Platform in a time-series format. If 

there were issues with online connectivity, a local dataset from Kaggle was used. Programming of edge 

devices was done using libraries such as Flask, Scikit-Learn, and Python 3.6. The system collected data 

from the industrial machine using the UCI ML Repository, and the model development section used this 

data to train and process the data using ML algorithms, including K-nearest neighbors, RF, SVM, and 

decision tree. The system uses predictive analysis to address the maintenance schedule and behavior of 

the industrial machine. By collecting data on pressures, vibrations, temperatures, power usage, and other 

factors, the system can be continuously evaluated. Several algorithms, including RF algorithms, were 

applied to the collected data to predict the failure phase of equipment. To achieve high accuracy, the 

system handles outliers, missing values, and performs data cleaning. Feature selection and 

hyperparameter fine-tuning are used to optimize model performance, which should be continuously 

monitored using updated data. 

 

TABLE I.  ACCURACY OF ML MODELS  

Model Accuracy 

Random Forest (RF) 0.92 

Support Vector Machines (SVM) 0.76 

Decision Trees(DT) 0.85 

K-nearest neighbours 0.88 

Results 

The model development section utilizes machine learning (ML) algorithms, including K-nearest 

neighbors, random forest (RF), Support Vector Machines (SVM), and Decision Trees, to process and 

train data from the IOT cloud. The user interface panel displays predicted results, simplifying the 

employment of predictive analysis to optimize system behavior and maintenance plans. By employing RF 

algorithms and other techniques, it is possible to predict failure phases based on variations in data 

features, such as vibration and volume. These predictions are made possible by the continuous evaluation 
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of parameters, including pressure, vibration, temperature, and power consumption. The accuracy of the 

ML models is demonstrated in Table I and Fig.1. 

 

 

Fig. 1. Accuracy of ML Models 

 

Table II and Fig. 2 showcase the accuracies of the machine learning models. Table III and Fig. 3 

present the recall of the models. Precision refers to the proportion of correctly predicted positive 

instances out of all the instances that the model predicted to be positive. On the other hand, recall 

represents the percentage of genuine positive cases that the model accurately identified. This metric is 

useful in evaluating a model's performance, which is calculated as the harmonic mean of precision and 

recall. 

 

TABLE II.  PRECISION OF ML MODELS 

 

Model Accuracy 

Random Forest 0.91 

SVM 0.87 

DT 0.83 

K-nearest neighbors 0.86 
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Fig. 2.  Precision of ML Models 

 

TABLE III.  RECALL OF ML MODELS 

 

Model Accuracy 

Random Forest 0.93 

SVM 0.90 

DT 0.86 

K-nearest neighbors 0.89 

 

Predictive maintenance can be effectively deployed in connected product environments and smart 

factory settings, providing a variety of benefits, including reduced occurrence of unplanned breakdowns, 

extended asset uptime, improved asset reliability, and decreased operational expenses through proactive 

maintenance and field service activities. The F1 scores, confusion matrices for random forest, SVM, 

decision tree, and KNN models are provided in Tables IV to VII, and the ROC-AUC scores are listed in 

Table IX. Additionally, the mean absolute error for the ML model is presented in Tables IX and X. 
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Fig. 3. Recall of ML Models 

 

TABLE IV.  F1-SCORE OF ML MODELS 

 

Model Accuracy 

RF 0.92 

SVM 0.88 

Decision Tree 0.84 

K-nearest neighbors 0.87 

 

TABLE V.  CONFUSION MATRIX FOR RANDOM FOREST 

 

 Predicted: 

No Failure 

Predicted: 

Failure 

Actual: No Failure 480 20 

Actual: Failure 30 470 

 

TABLE VI.  CONFUSION MATRIX FOR SUPPORT VECTOR MACHINE 

 Predicted: No 

Failure 

Predicted: 

Failure 

Actual: No 

Failure 

470 30 

Actual: Failure 40 460 
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TABLE VII.  CONFUSION MATRIX FOR DECISION TREE 

 

 Predicted: 

No Failure 

Predicted: 

Failure 

Actual: No 

Failure 

450 50 

Actual: Failure 60 440 

 

TABLE VIII.  CONFUSION MATRIX FOR K-NEAREST NEIGHBORS 

 

 Predicted:  

No Failure 

Predicted:  

Failure 

Actual: No 

Failure 

460 40 

Actual: Failure 50 450 

 

TABLE IX.  ROC-AUC SCORE FOR ML MODELS 

 

Model ROC - AUC 

Random Forest 0.95 

SVM 0.92 

DT 0.88 

K-nearest neighbors 0.91 

 

TABLE X.   MEAN ABSOLUTE ERROR (MAE) OF ML MODELS 

Model MAE 

Random Forest 0.07 

SVM 0.09 

DT 0.11 

K-nearest neighbors 0.08 
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Discussion 

The datasets from each publication that were examined were vital for designing a solution for this 

problem. In order to train an AI model successfully, it is necessary to have data that meets both 

qualitative and quantitative requirements. Specifically, a substantial amount of high-quality data is 

needed for the model to perform well. This information pertains to the PdM and the operation of the 

device. This function can involve both error-prone and error-free activities, or it can involve only the 

data that result from errors. In the first scenario, there is a large amount of data available, assuming that 

numerous operational situations have been recorded. However, the second requirement is data quality. 

When a machine is functioning properly, it operates smoothly. There will be a substantial amount of 

data from regular operation and only a small amount of data from faults when an error occurs and is 

logged, which can cause many issues during training. This issue, known as "unbalanced data," 

frequently arises when datasets are obtained from real-world problems. 

Typically, a class with adverse circumstances is considered the one under examination if it is not 

numerically superior. When the prediction model is running, four states are generated. Both correct and 

incorrect procedures have two scenarios in which the forecast is accurate. The other two scenarios are 

instances where the forecast proves to be ineffective. 

There are various methods to address this issue, with the most commonly used being the recalibration 

of a sample. Three techniques are employed: oversampling, subsampling, and their combination. 

Subsampling is typically used in the dominant class to reduce size, while techniques such as data 

synthesis or duplicate data are utilized in the less powerful class. 

In addition, sensors serve as the medium through which data is produced. They collect a multitude of 

measures and combine them at various points, as previously mentioned. 

The accuracy of these sensors is crucial because the model's training and accurate predictions depend 

on the data they provide. Due to technological advancements, small sensors can now be easily fitted to 

almost any type of construction. Additionally, today's measurements are highly accurate, resulting in 

reliable data for building the model. As technology continues to advance, sensors will become even 

more accurate and smaller, leading to more sensors and more effective models. Artificial intelligence 

has made significant progress in recent years, with high-performance models being developed in 

conjunction with increasing data accessibility. One of the main challenges is that the machine learning 

models used were viewed as "black boxes." Consequently, there is insufficient justification for why a 

system should be shut down for maintenance. Future work will focus on overcoming this obstacle. After 
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some success has been achieved, there will be a larger push to apply machine learning methods in 

predictive maintenance (PdM). Furthermore, the current trend is on the rise. 

Challenges 

One of the main criticisms of most machine learning (ML) approaches is their black-box nature, 

which makes it difficult to obtain a precise mathematical description for most ML and deep learning 

(DL) techniques. A significant maintenance issue with ML methods is their pessimistic nature, which 

can be problematic when trying to understand why a specific forecast was made. While classification 

accuracy is a useful metric, it is not always sufficient to fully describe real-world jobs. 

When it comes to predictive modelling, it is important to understand not just what is expected, but 

also why a particular forecast was made. In some cases, a low-risk environment may be sufficient to 

view the forecast results alone, rather than the explain ability of the results. However, in other situations, 

the explain ability of the models is crucial for gaining a more precise understanding of the problem and 

data. The demand for explain ability arises when there is insufficient problem elucidation, as the forecast 

findings only partially resolve the problems. 

There are certain requirements for interpretability and explain ability, such as human cognition and 

education. People are generally interested in learning and discovering meanings, so candidates who 

receive a low prediction accuracy or are rejected by a certain ML model may be deemed unacceptable or 

unsatisfactory. Additionally, explain ability and interpretability draw on additional knowledge that the 

model has learned, which is important in scientific knowledge and learning. 

Finally, safety precautions are also a concern when it comes to complex task structures. It is difficult 

to imagine all situations in which a complex task structure can collapse, and it is not mathematically 

possible to list every input and output. Therefore, it is important to ensure that models are explainable 

and interpretable in order to mitigate potential safety risks. 

An AI model that is explainable will also be fair, as it generates unbiased predictions and safeguards 

data privacy. It is reliable because small input variations do not significantly impact the outputs, and it is 

trustworthy because people are more likely to trust explainable models over complex, opaque models. 

Human feedback enhances both the data and the model due to the clear outcomes, resulting in more 

accurate predictions. 

Interpretability and explain ability are often used interchangeably in ML and AI systems. Explain 

ability pertains to the extent to which a complex ML model's inner workings are comprehensible to 
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humans, while interpretability refers to the ability to forecast the outcome of altering a model's input 

variables. 

Employing algorithms that generate interpretable models is the most straightforward method for 

achieving interpretability. Some of the most common interpretable models include decision trees [38], 

decision rules [39], and logistic regression [39]. 

Conclusions 

Not only is machine learning (ML) currently dominating the field of robotics, but it is also advancing 

at a rapid pace in the manufacturing industry's industrial and production sectors. Automation with high-

quality output is becoming a reality as ML approaches are being adopted and implemented. The primary 

goal of this research is to implement a method for estimating the accuracy of manufacturing machines 

and to increase the output quantity, quality, and lifespan. Additionally, the article aims to present a 

cutting-edge approach in the field of ML-assisted automation of industrial machinery. 

Predictive maintenance (PdM) solutions are designed to support the evaluation of equipment to 

determine when repairs are necessary. This approach offers lower costs than routine or time-based PdM 

because actions are only taken when necessary. As a result, it is considered condition-based maintenance 

carried out in line with the assessments of the level of deterioration of an object. The key advantages of 

PdM include the ability to schedule corrective maintenance conveniently and protect equipment from 

unplanned breakdowns. Some encouraging results of PdM include reduced machine downtime, avoided 

unnecessary maintenance costs, and increased revenue streams for equipment suppliers that provide 

aftermarket services. However, when integrating PdM technology into their organizations’ operations, 

scientists and engineers face challenges related to data and processes. This work can be expanded to 

include neural networking and its applications. 

The most commonly used techniques for predictive maintenance (PdM) are reported to be RF, SVM, 

and ANN, but the effectiveness of these approaches depends on the specific data related to the problem 

at hand. In addition, PdM applications typically utilize multiple sensors to acquire a wide range of data, 

which is a common requirement for these operations. Among the 12 types of sensors, noise, 

temperature, sound, and vibration sensors are the most frequently used in PdM applications involving 

machine learning. 

These findings point to the importance of including temperature, vibration, and noise as key 

parameters in PdM ML models. Future research could focus on sector-specific PdM studies to evaluate 
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the performance of these models in specific industries and to gain further insights. Additionally, 

connecting sensors to specific sectors could highlight the specific sensors used. Overall, a review of 

available data and current efforts to address the issue of black box models suggests that the adoption of 

PdM is expected to grow rapidly in the coming years, with many businesses in the production sector 

investing in this technology. 

Future Study 

Machine learning (ML) techniques have shown significant success in industrial maintenance but face 

two major issues: their "black-box" nature, hindering interpretability, and limited generalization. To 

tackle the challenge of understanding system decisions, Explainable Artificial Intelligence (XAI) has 

emerged, aiming to enhance ML model interpretability while maintaining high predictive accuracy. 

Mechanical problems can cause costly production delays. By employing XAI in maintenance, downtime 

impact can be reduced, and performance monitoring can be improved, anticipating and resolving issues 

proactively. XAI can identify patterns in maintenance data, enabling more efficient scheduling and 

decreasing unexpected downtime. XAI also fosters trust with clients by improving system 

interpretability and advancing the technology. XAI ensures that systems operate with high accuracy, 

integrity, and performance, adhering to ethical and professional standards. 
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