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Nonlinear partial differential equations (PDEs) play a crucial role in 

modeling various physical, biological, and engineering phenomena, 

including fluid dynamics, heat transfer, wave propagation, and general 

relativity. Due to their inherent complexity, finding analytical solutions 

is often infeasible, necessitating the use of numerical methods for their 

approximation. This study focuses on the application of finite 

difference (FDM) and finite element methods (FEM) for solving 

nonlinear PDEs Burgur’s Equation. The research explores the 

theoretical foundation of both methods, highlighting their advantages, 

limitations, and suitability for different types of nonlinear PDEs. The 

finite difference method is implemented for time-dependent nonlinear 

equations, leveraging explicit and implicit schemes for stability and 

accuracy analysis. The finite element method is employed for spatially 

complex domains, utilizing adaptive meshing and higher-order 

elements to improve solution precision. Convergence analysis, stability 

criteria, and computational efficiency are examined for both 

approaches. This research provides a comprehensive analysis of 

numerical techniques for nonlinear PDEs, offering insights into their 

practical applications in scientific and engineering problems. Future 

work may include hybrid approaches combining FDM and FEM or 
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leveraging machine learning techniques for improved numerical 

approximations. 

DOI : https://doi.org/10.5281/zenodo.15030215 

Introduction 

Nonlinear partial differential equations (PDEs) arise in a wide range of scientific and engineering 

disciplines, including fluid dynamics, heat transfer, quantum mechanics, general relativity, and 

biological systems. Unlike linear PDEs, which can often be solved using classical analytical techniques, 

nonlinear PDEs exhibit complex behaviors such as shock waves, solitons, turbulence, and pattern 

formation, making their solutions significantly more challenging. As a result, numerical methods have 

become essential tools for studying these equations. Among the various numerical techniques available, 

the finite difference method (FDM) and the finite element method (FEM) are widely used due to their 

robustness, versatility, and computational efficiency. The finite difference method discretizes the 

continuous domain using a structured grid and approximates derivatives via difference equations. It is 

particularly effective for time-dependent problems and simple geometries. On the other hand, the finite 

element method employs piecewise polynomial basis functions over an unstructured mesh, making it 

more suitable for complex geometries and problems with irregular boundaries. 

           This study focuses on the application and comparative analysis of FDM and FEM for solving 

nonlinear PDEs. The study will explore both explicit and implicit schemes in FDM, as well as different 

basis functions and meshing techniques in FEM. Additionally, error analysis and stability conditions, 

such as the Courant–Friedrichs–Lewy (CFL) condition for FDM and energy norm estimates for FEM, 

will be examined. By evaluating the strengths and limitations of these methods, this research aims to 

provide insights into the effective numerical treatment of nonlinear PDEs in various applications. 

Nonlinear Partial Differential Equations (PDEs) play a fundamental role in various scientific and 

engineering fields, including fluid mechanics, general relativity, quantum mechanics, biological 

modeling, and material science. Unlike linear PDEs, nonlinear PDEs involve terms where the dependent 

variable or its derivatives appear in nonlinear combinations. These equations often exhibit complex 

behaviors such as solitons, chaos, turbulence, and pattern formation, making them difficult to solve 

analytically. Some well-known nonlinear PDEs include: Burgers’ Equation, Nonlinear Schrödinger 

Equation, Reaction-Diffusion Equations and Euler and Navier-Stokes Equations .Due to the challenges 

associated with analytical solutions, numerical methods such as the Finite Difference Method (FDM) 
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and Finite Element Method (FEM) are widely used for solving nonlinear PDEs. The Finite Element 

Method (FEM) is a powerful numerical technique used to solve nonlinear partial differential 

equations (PDEs) in various scientific and engineering applications. Unlike the Finite Difference 

Method (FDM), which uses structured grids, FEM discretizes the domain into small elements and 

approximates the solution using basis functions. This makes FEM particularly useful for handling 

complex geometries, irregular boundaries, and higher-order PDEs. 

Mathematical Model 

Burgers’ equation is a fundamental nonlinear partial differential equation that appears in various fields, 

including fluid mechanics, turbulence modeling, traffic flow, and nonlinear acoustics. It serves as a 

simplified model for more complex equations like the Navier-Stokes equations. 

The one-dimensional Burgers’ equation with viscosity is given by: 
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where: 

 𝑢(𝑥, 𝑡)) is the velocity field, 

 𝑣 is the kinematic viscosity (when 𝑣 = 0 the equation becomes inviscid), 

 𝑥 and 𝑡 are the spatial and temporal coordinates. 

Analytical Solutions of Burgers’ Equation 

For the inviscid Burgers’ equation (𝑣 = 0): 
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The method of characteristics can be used to solve it, leading to solutions that develop shock waves over 

time. 

For the viscous Burgers’ equation, the equation has an analytical solution using the Cole-Hopf 

transformation: 
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This transformation helps convert the nonlinear PDE into a linear one. 

Numerical Methods for Solving Burgers’ Equation: 

Since analytical solutions are not always feasible, numerical methods such as Finite Difference 

Method (FDM) and Finite Element Method (FEM) are used for solving Burgers’ equation. 

 Finite Difference Method (FDM) for Burgers’ Equation 

The Finite Difference Method (FDM) is a popular numerical approach for solving partial differential 

equations, including Burgers’ equation. Burgers' equation is a fundamental nonlinear PDE that appears 
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We discretize the equation using finite differences in time and space. Let 𝑢௜
௡ represent the numerical 

approximation to𝑢(𝑥௜ , 𝑡௡) where: 

𝑥௜ = 𝑖∆𝑥, 𝑖 = 0,1, … … … … , 𝑁 

𝑡௡ = 𝑛∆𝑡, 𝑛 = 0,1, … … … …. 

A common approach uses: 

 Forward difference for the time derivative: 
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Central difference for the convection term:  
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Central difference for the diffusion term: 
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Substituting these approximations, we obtain: 
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Since the convection term can cause numerical instabilities, an upwind scheme is often preferred: 
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which leads to a first-order accurate scheme: 
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This reduces numerical oscillations but introduces some artificial diffusion. 

To improve stability, particularly for higher values of 𝑣, an implicit scheme like Crank-Nicolson can be 

used for the diffusion term: 
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This results in a system of linear equations that can be solved using methods such as the Thomas 

algorithm (for tridiagonal matrices). 

For explicit methods, the Courant-Friedrichs-Lewy (CFL) condition must be satisfied: 
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Solution of Mathematical Model: 

The Finite Element Method (FEM) is an alternative to the Finite Difference Method (FDM) for 

solving Burgers’ equation. FEM provides more flexibility in handling irregular geometries and boundary 

conditions, making it advantageous for complex domains. 

To apply FEM, we derive the weak form by multiplying Burgers’ equation by a test function 𝑣 and 

integrating over the domain Ω: 
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Applying integration by parts to the diffusion term: 
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If homogeneous Dirichlet boundary conditions are imposed (i.e., 𝑢 = 0𝑢 =  0𝑢 = 0 on 𝜕𝛺), the 

boundary term vanishes. 

Thus, the weak formulation becomes: 
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Now, this weak form can be discretized using finite element basis functions. 

Outcome of Burgers' Equation Solutions 

The solution of Burgers' equation depends significantly on the viscosity parameter  𝜈, as well as the 

initial and boundary conditions. Below are different possible solution behaviors: 

1. Inviscid Case (ν=0): Formation of Shock Waves 

 When 𝜈 = 0, Burgers' equation reduces to inviscid Burgers' equation: 
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 This equation is nonlinear and can lead to the formation of shock waves due to steepening of 

wavefronts. 

 Characteristics may cross, causing discontinuities (shock formation). 

 The solution can be obtained using the method of characteristics, which tracks wave 

propagation along characteristic curves. 

2. Viscous Case (𝝂 > 𝟎): Smooth Solutions 

 For 𝜈 > 0, the equation includes the diffusion term: 
డ௨

డ௧
+ 𝑢

డ௨

డ௫
= 𝜈

డమ௨

డ௫మ
..  

 The presence of viscosity smooths out discontinuities, preventing shock wave formation. 

 The solution behaves like a diffusive wave, and as ν\nu increases, the wave spreads more 

gradually. 

 In the high-viscosity limit, the solution resembles a heat equation, leading to Gaussian-like 

diffusion. 

3. Initial and Boundary Condition Influence 

 Step Initial Condition: If the initial condition has a discontinuity (e.g., Riemann problem), 

shocks form in the inviscid case, while the viscous case leads to smooth transitions. 

 Periodic Boundary Conditions: Can lead to wave-like solutions with periodic oscillations. 

 Fixed Boundary Conditions: Can result in stationary or transient solutions depending on the 

problem setup. 

4. Long-Time Behavior 

 For large 𝑡, the solution converges to a steady state determined by boundary conditions. 

 In the high-viscosity case, the steady-state solution satisfies: 𝑢
ௗ௨

ௗ௫
= 𝜈

ௗమ௨

ௗ௫మ
. 

  If ν\nu is small but nonzero, a thin boundary layer may develop near discontinuities. 

Conclusion 

This study explored the numerical solutions of nonlinear partial differential equations (PDEs) using 

two widely used discretization techniques: the Finite Difference Method (FDM) and the Finite 

Element Method (FEM). Specifically, Burgers' equation was considered as a test case, as it contains 
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both nonlinear convection and diffusive terms, making it a useful benchmark for assessing numerical 

schemes. 

Comparative Analysis 

1. Finite Difference Method (FDM): 

o Simple to implement, particularly on structured grids. 

o Efficient for problems with regular geometries and periodic boundary conditions. 

o Explicit methods are easy to apply but require CFL stability constraints. 

o Implicit schemes (e.g., Crank-Nicolson) improve stability but increase computational 

cost. 

o Suitable for shock formation studies, but may require unwinding schemes or artificial 

viscosity to handle discontinuities. 

2. Finite Element Method (FEM): 

o More flexible for complex geometries and unstructured meshes. 

o Handles boundary conditions more naturally through weak formulation. 

o Provides higher-order accuracy when using advanced basis functions (e.g., quadratic 

elements). 

o Computationally more expensive due to matrix assembly and solving. 

o More effective for problems requiring adaptive mesh refinement (AMR) or variable 

diffusion coefficients. 

Key Findings 

 For smooth initial conditions and small viscosity (ν), both methods provide comparable 

results, with FDM being computationally cheaper. 

 For shock formation (ν→0), FDM with unwinding schemes is easier to implement, while 

FEM requires stabilization techniques (e.g., SUPG). 

 FEM is superior for irregular domains, where mesh adaptively is necessary. 

 FDM is preferable for simple 1D problems, while FEM is recommended for 2D/3D 

problems with complex boundaries. 
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Future Work 

To further improve numerical modeling of nonlinear PDEs, future studies can explore: 

 Higher-order FDM schemes (e.g., WENO, spectral methods) for better shock resolution. 

 Adaptive mesh refinement (AMR) in FEM for improved accuracy and efficiency. 

 Hybrid FDM-FEM approaches to leverage the strengths of both methods. 

 Parallel computing techniques to enhance computational performance for large-scale problems. 

Overall, the choice between FDM and FEM depends on the problem type, computational resources, 

and required accuracy. Both methods provide valuable tools for solving nonlinear PDEs, each with 

unique advantages and trade-offs. 
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