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Liver cirrhosis is a chronic liver disease marked by the gradual scarring 

of liver tissue, which ultimately results in liver dysfunction. Long-term 

liver damage from a variety of sources, including infections, 

alcoholism, and metabolic disorders, is the origin of this scarring. The 

progression of cirrhosis occurs in stages, moving from compensated, 

where the liver maintains relatively good function, to decompensated, 

characterized by severe complications.  Therefore, for efficient clinical 

treatment, it is essential to accurately predict the stages of liver 

cirrhosis. This article introduces a hybrid approach that combines 

Explainable AI methods such as Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive exPlanations (SHAP) to 

estimate feature importance, optimizing their contributions using four 

metaheuristic algorithms: Particle Swarm Optimization (PSO), Whale 

Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), and 

Firefly Algorithm (FA). The intersection of top-ranked features across 

these methods is then determined, providing a robust selection of the 

most significant predictors. The findings highlight the efficacy of this 

hybrid approach in enhancing the reliability of feature selection for 

liver cirrhosis stage prediction. 
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Cirrhosis, a persistent liver disease, results in significant and irreversible damage to the liver (Arroyo et 

al., 2016). This condition develops due to various underlying diseases, causing structural and functional 

deterioration of the liver. As cirrhosis progresses, healthy liver cells are gradually lost, leading to 

fibrosis (scarring), hardening, and shrinkage of the liver (Garcia-Martinez et al., 2013). The reduced 

blood flow to these hardened tissues forces the body to create new vascular pathways to compensate. 

However, this process further worsens liver function, ultimately leading to liver failure (Mozos, 2015). 

In the early stages of liver cirrhosis, symptoms are often mild and nonspecific but become more severe 

as liver damage progresses (Younossi & Henry, 2015). As the disease advances, patients may 

experience fluid retention (edema), abdominal swelling (ascites), muscle wasting, easy bruising, 

increased bleeding tendency, severe itching, and jaundice (Pinto, Schneider, & da Silveira, 2015). 

An essential part of the body's metabolic functions is the liver.  It creates vital proteins like albumin, 

which support blood vessel fluid equilibrium (van Zutphen et al., 2016).  When liver function declines, 

albumin synthesis decreases, causing fluids to leak into tissues, leading to leg swelling and abdominal 

fluid accumulation (Guerci et al., 2019). Furthermore, liver impairment reduces the generation of blood 

clotting factors, which increases the risk of bleeding and makes bruising easier.  Toxic compounds build 

up in the bloodstream as cirrhosis progresses, causing hepatic encephalopathy (liver failure-related brain 

dysfunction).  Severe alcohol consumption, diabetes, obesity, gastrointestinal disorders, heart failure, 

and unprotected sexual activity are some of the variables that lead to cirrhosis (Ginès et al., 2021). 

Traditionally, liver cirrhosis stage detection relies on biopsy, imaging tests (ultrasound, MRI), and blood 

tests, which can be invasive and time-consuming (Acharya et al., 2015). Artificial Intelligence (AI) 

algorithms can help in this issue by providing faster, and non-invasive diagnostic solutions. AI enables 

early detection, allowing timely interventions that slow disease progression and reduce complications 

(Nam et al., 2022).  

In recent years, significant research has been conducted in the area of liver disease prediction. (Auxilia, 

2018) proposed a predictive model for liver patient classification, employing Pearson Correlation for 

feature selection and comparing five classifiers: Decision Tree (DT), Naïve Bayes (NB), Artificial 

Neural Network (ANN), Support Vector Machine (SVM), and Random Forest (RF), with DT yielding 

the highest accuracy. Similarly, (Veena et al., 2018) applied five data mining algorithms to the Indian 

Liver Patient Dataset, achieving highest accuracy with the C5.0 boosted classifier. (Rahman et al., 2019) 

conducted a comparative study using supervised learning methods, including K-Nearest Neighbors 
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(KNN), Logistic Regression (LR), DT, SVM, NB, and RF, finding that LR performed best in terms of 

classification accuracy and F1-score. (Rabbi et al., 2020) also used Pearson Correlation for feature 

selection and compared LR, DT, RF, and Extra Trees (ET) for liver disease prediction, with ET yielding 

the best performance. (Shaheamlung & Kaur, 2021) proposed a voting-based hybrid classification 

method combining KNN, LR, and DT for liver disease prediction on the Indian Liver Patient Dataset. 

(Singh, Gourisaria, & Das, 2021) used the same dataset to evaluate the performance of several boosting 

algorithms for liver disease prediction, including XG Boost, CatBoost, and AdaBoost. (Utku, 2023) 

developed a Multilayer Perceptron (MLP) model for liver cirrhosis detection using the Cirrhosis Patient 

Survival Prediction dataset. (Topcu, Elbasi, & Alzoubi, 2024)  also utilized this dataset to predict early-

stage cirrhosis using various machine learning algorithms, including LR, KNN, RF, MLP, AdaBoost, 

and BernoulliNB, with RF achieving the best performance. 

Compared to existing studies, the proposed method offers several key contributions in liver cirrhosis 

stage prediction. While prior research has primarily focused on traditional machine learning classifiers, 

this study integrates Explainable AI techniques, namely Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive exPlanations (SHAP) to enhance the interpretability of 

feature selection. Most previous works have prioritized classification accuracy while overlooking the 

identification of the most critical features. Moreover, recognizing the limitations of relying on a single 

feature selection technique, as demonstrated in (Auxilia, 2018) and (Rabbi et al., 2020), this work adopts 

a hybrid optimization framework. The contributions of LIME and SHAP are combined and optimized 

using four metaheuristic algorithms: Particle Swarm Optimization (PSO), Whale Optimization 

Algorithm (WOA), Grey Wolf Optimization (GWO), and Firefly Algorithm (FA), ensuring a more 

reliable selection of relevant predictors. By identifying the common top-ranked features selected by 

these algorithms, the proposed approach enhances the robustness of feature selection, leading to more 

informed clinical decision-making, and better patient outcomes. 

 

2. Materials and Methods 

The aim of this study is to determine the most influential attributes for predicting liver cirrhosis stages. 

The proposed workflow comprises the following steps: 
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Data pre-processing: The raw data is pre-processed by handling missing values, encoding categorical 

variables, and normalizing features. 

Feature importance estimation: A Random Forest classifier is trained on the dataset to serve as the base 

model for feature importance estimation and then feature importance is estimated using two Explainable 

AI (XAI) methods, namely Local Interpretable Model-agnostic Explanations (LIME) and SHapley 

Additive exPlanations (SHAP). 

Optimization: Feature importance values obtained using LIME and SHAP are combined and optimized 

using metaheuristic algorithms such as, Particle Swarm Optimization (PSO), Whale Optimization 

Algorithm (WOA), Grey Wolf Optimization (GWO), and Firefly Algorithm (FA). 

Feature selection: The most influential features are determined by identifying the common top-ranked 

features from each optimized model. 

Details of the dataset and its pre-processing are described in Section 2.1, while feature importance 

estimation and optimization using metaheuristic algorithms are elaborated in Sections 2.2 and 2.3, 

respectively. 

2.1. Dataset Description and Pre-processing 

In this study, the Cirrhosis Patient Survival Prediction dataset is utilized, which comprises 20 attributes 

from 418 patients, encompassing demographic details, clinical observations, and laboratory test results. 

This dataset is accessible via the UCI Machine Learning Repository: 

https://archive.ics.uci.edu/dataset/878/cirrhosis+patient+survival+prediction+dataset-1.  

A detailed description of the attributes is provided in Table 1. The 'Stage' attribute, which represents the 

histologic stage of liver cirrhosis, is designated as the target variable for prediction. However, the 

attributes 'ID', 'N_Days', 'Status', and 'Drug' were considered irrelevant for cirrhosis stage prediction and 

were therefore excluded from further analysis. 'ID' is simply a unique identifier for each patient and has 

no bearing on their liver condition or its stage. Keeping it in the dataset could introduce noise without 

contributing to model performance. 'N_Days' might be relevant for survival analysis but it does not 

directly reflect the current stage of cirrhosis. Since, this value is an outcome rather than a predictor, 

including it would lead to data leakage, where the model indirectly learns from future outcomes rather 

than true predictive patterns. The 'Status' attribute is related to patient survival rather than cirrhosis 
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staging, making it inappropriate for predicting the histologic stage of the disease. The 'Drug' attribute 

indicates whether a patient was given D-penicillamine or a placebo. While drug treatment may influence 

disease progression or survival, it does not directly reflect the histologic stage of cirrhosis at a given 

point in time. Additionally, including treatment as a predictor could bias the model, as the drug 

assignment is not a biological determinant of cirrhosis stage. Hence, removing these attributes prevents 

data leakage, eliminates non-informative variables, and ensures the model focuses on relevant 

predictors. Thus, the remaining 15 attributes serve as meaningful features for liver cirrhosis stage 

prediction. 

Table 1. Description of the Cirrhosis Patient Survival Prediction  dataset 

Column name Description Type 

ID Unique identifier of patients Integer 

N_Days Duration from patient registration until the first 

occurrence of death, transplant, or study completion 

Integer 

Status The patient's final status, categorized as C (censored), 

CL (because of liver transplantation), or D (death) 

 

Drug Type of drug D-penicillamine or placebo  

Age Age of the patients in the number of days Integer 

Sex M (male) or F (female) Categorical 

Ascites Indication of ascites: N (no) or Y (yes) Categorical 

Hepatomegaly Indication of hepatomegaly: N (no) or Y (yes) Categorical 

Spiders Indication of spiders: N (no) or Y (yes). Categorical 

Edema Categorization of edema: N (absent, with no diuretic 

treatment), S (present without diuretics or resolved 

by diuretics), or Y (persistent despite diuretic use) 

Categorical 

Bilirubin Concentration of bilirubin in serum (mg/dl) Continuous 

Cholesterol Concentration of cholesterol in serum (mg/dl) Integer 

Albumin Concentration of albumin in serum (gm/dl) Continuous 

Copper Level of copper in urine (μg/day) Integer 

Alk_Phos Alkaline phosphatase level (U/liter) Continuous 

SGOT SGOT level (U/ml) Continuous 
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Tryglicerides Tryglicerides level (mg/dl) Integer 

Platelets Platelets value per cubic ml/1000 Integer 

Prothrombin Prothrombin time in seconds Continuous 

Stage Histologic stage of disease as 1, 2, 3, or 4 Categorical 

  

Initially, the dataset contains missing values in some attributes, which are addressed using the 

MissForest imputation technique (Stekhoven & Bühlmann, 2021). MissForest, an iterative, non-

parametric method based on Random Forest, is employed to impute missing values, ensuring the 

integrity of the dataset. This approach effectively preserves the relationships among features while 

estimating missing values (Stekhoven & Bühlmann, 2021). 

Categorical features are identified and appropriately transformed into numerical representations to 

ensure compatibility with machine learning models. The categorical values of the 'Sex' attribute are 

changed to 1 for 'M' and 0 for 'F'. The 'Ascites', 'Hepatomegaly', and 'Spiders' attributes are encoded as 0 

for 'N' and 1 for 'Y'. The 'Edema' attribute is transformed into 0 for 'N', 1 for 'Y', and 2 for 'S'. 

Continuous numerical features are normalized to standardize their values between 0 and 1, mitigating 

the impact of varying feature scales. 

2.2. Feature Importance Estimation using LIME and SHAP 

To identify the most significant features in predicting cirrhosis stages, two XAI techniques: Local 

Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are 

used in this article. These methods are widely used for interpreting machine learning models. 

LIME operates by slightly altering the input data for a specific prediction and observing the resulting 

changes in the model's output (Zafar & Khan, 2021). Through the analysis of these perturbations, LIME 

identifies the features that most significantly impact the model's prediction for that particular instance. 

This provides a local explanation, highlighting which features contributed positively or negatively on the 

prediction for that specific data point (Zafar & Khan, 2021). 

In contrast, SHAP leverages principles from cooperative game theory to offer a cohesive measure of 

feature importance. It computes Shapley values, which quantify each feature's contribution to the 

prediction (Nohara et al., 2022). While LIME focuses on local interpretability, SHAP aims to provide a 

global understanding of feature importance. Shapley values consider all possible feature combinations to 
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determine the impact of each feature on the model's output (Nohara et al., 2022). This approach ensures 

a fair distribution of importance among the features, providing a consistent and accurate representation 

of their influence on the model's predictions. 

After pre-processing, as detailed in Section 2.1, the dataset is divided into training (80%) and testing 

(20%) sets using stratified splitting to maintain balanced class distributions. A Random Forest classifier 

is then trained on the training set to serve as the base model for the XAI techniques. 

For analysis using SHAP, a TreeExplainer is employed to estimate Shapley values for each feature. 

TreeExplainer is a specific implementation of the SHAP, designed to efficiently calculate Shapley 

values specifically for tree-based machine learning models including Decision Tree, Random Forest, and 

Gradient Boosting Machines. These Shapley values offered insights into each variable's contribution to 

the model's predictions (Nohara et al., 2022). The mean absolute Shapley value across all test instances 

is computed to quantify feature importance. 

For analysis using LIME, a LimeTabularExplainer is used to generate instance-wise feature 

explanations. LimeTabularExplainer is a key component of the LIME method, designed to explain 

individual predictions of machine learning models (Zafar & Khan, 2021). It is specifically tailored for 

tabular data, where samples (observations) are represented by rows and features by columns. Unlike 

global explainability techniques like SHAP, LIME provides local interpretability, explaining why a 

model made a particular prediction for a specific instance rather than for the entire dataset (Zafar & 

Khan, 2021). The model's prediction probabilities are perturbed, and feature contribution weights are 

aggregated across multiple instances. The average absolute LIME weights are calculated to determine 

each feature's importance.  

2.3. Optimization using Metaheuristic Algorithms 

As explained in Section 2.2, The SHAP and LIME importance scores for 15 features are independently 

computed. As a result, for each feature, there are two importance scores: one from LIME and one from 

SHAP. The goal is to combine the LIME and SHAP importance scores to get a more robust and reliable 

measure of feature importance. To achieve this, a weighted sum approach is used. A single objective 

function is defined to combine the individual feature importance values obtained using LIME and 

SHAP. This function is defined as, 

F = σ.L + η.S; 
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where, 

L is a 1x15 column vector containing LIME importance scores. 

S is a 1x15 column vector containing SHAP importance scores. 

σ and η are weights associated with LIME and SHAP scores, respectively, such that σ + η = 1 (This 

ensures a balanced distribution of importance values between the two techniques). 

F is a 1x15 column vector containing is the final combined importance scores. 

Hence, using the above function, the final importance score for each feature fi is given by: 

 σ.Li + η.Si; where, Li and Si are LIME and SHAP importance values for fi respectively.  

The key challenge is to find the optimal values for the weights σ and η. For this purpose, four 

metaheuristic algorithms: PSO, WOA, GWO, and FA are used. 

In each of the four optimization algorithms, a population-based search approach is employed. Each 

individual (particle, whale, wolf, or firefly) in the population represents a candidate solution, i.e., a 

potential value of σ. The corresponding value of η is implicitly determined as (1 – σ). The steps involved 

in the optimization process are as follows: 

Initialization: The initial population of candidate solutions (σ values) is generated in random manner 

within the range [0,1]. 

Fitness Evaluation: Each candidate σ value is used to compute the combined LIME-SHAP importance 

scores for all features. A Random Forest model is trained using these scores. The classification error rate 

is computed as the fitness value. 

Population Update: Based on the specific optimization algorithm, individuals adjust their positions to 

explore better solutions. 

Convergence Check: The process continues for a predefined number of iterations or until a stopping 

criterion (such as minimal improvement in fitness) is met. 

Best Solution Selection: The best-performing individual provides the optimized σ, and η is computed as 

(1 – σ). These final weights are used to compute the optimized feature importance scores. 

Since, each method employs a distinct approach to update the population, the algorithm-specific update 

processes are described in the Sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4. 
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2.3.1 Optimization using PSO 

PSO draws inspiration from the collective behavior observed in bird flocks and fish schools, where 

individuals adjust their positions based on two key factors: the best solution an individual particle has 

found so far (pbest) and the best solution found by any particle in the swarm (gbest). Each particle in the 

PSO swarm represents a possible σ value. The velocity of a particle determines how much it moves 

toward better solutions. During each iteration, particles update their positions (σ values) based on their 

own past experiences and the swarm’s collective knowledge (Wang, Tan, & Liu, 2018). The fitness of 

each particle is evaluated using the Random Forest model's error rate. If a particle finds a better σ, it 

updates its pbest. The global best gbest is updated if any particle outperforms the current best solution 

(Wang, Tan, & Liu, 2018). This iterative process continues until convergence, and the best-performing 

particle at the end provides the optimized σ value. 

2.3.2 Optimization using WOA 

WOA mimics the bubble-net hunting strategy of humpback whales, balancing exploration, and 

exploitation through the following three mechanisms : 

Encircling Prey (exploration and exploitation): Whales move closer to promising regions. 

Bubble-Net Attacking (exploitation): Whales spiral inward toward the best solution. 

Random Search (exploration): Whales move randomly to avoid local optima. 

Each whale represents a candidate σ value. During each iteration, the fitness of each whale is determined 

using the Random Forest error rate. Whales adjust their σ values by either following the best whale 

(exploitation) or exploring new areas (exploration). Over multiple iterations, whales converge on the 

best σ value, which minimizes classification error. The whale with the best fitness at the end provides 

the optimized σ, and the final feature importance scores are computed (Nadimi-Shahraki et al., 2023). 

2.3.3 Optimization using GWO 

GWO is modelled after the social hierarchy and hunting strategies of grey wolves. The wolf pack has a 

strict social hierarchy: alpha (α), beta (β), delta (δ), and omega (ω). The α wolf is the leader, followed by 

β and δ wolves. The ω wolves follow the other wolves. GWO simulates the hunting process, where the 

wolves encircle, chase, and attack prey (Makhadmeh et al., 2023). The algorithm uses this hierarchical 
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structure and hunting behavior to effectively search for the optimal solution. The grey wolves are ranked 

according to their fitness values. The wolf with the best fitness is designated as alpha (α), the second-

best as beta (β), and the third-best as delta (δ). Each wolf represents a possible σ value. The fitness of 

each wolf is calculated based on the Random Forest model's error rate. The α, β, and δ wolves guide the 

remaining wolves toward the optimal solution. Wolves adjust their σ values by moving toward the 

leaders while maintaining some randomness for exploration. After several iterations, the α wolf (best 

solution) provides the optimal σ value (Makhadmeh et al., 2023). 

2.3.4 Optimization using FA 

FA is inspired by the flashing behavior of fireflies, where, brighter fireflies (better solutions) attract less 

bright ones. Movement towards brightness (exploitation) is balanced with random movement 

(exploration). The algorithm simulates the movement of fireflies towards brighter ones, representing 

better solutions in the search space (Kumar & Kumar, 2021). Each firefly represents a candidate σ value. 

The process includes evaluating the fitness of each firefly based on the Random Forest error rate and 

moving toward brighter fireflies (better solutions). The movement also includes a random exploration 

component to avoid local optima, which helps in exploration. The position of each firefly is updated in 

each iteration based on the attraction and random movement. After multiple iterations, the brightest 

firefly (best solution) provides the optimized σ value (Kumar & Kumar, 2021). 

After applying these four optimization algorithms, the intersection of the top-ranked features identified 

by each method is determined, resulting in a reliable selection of the most important predictors. By 

focusing on the shared top-ranked features from these algorithms, the proposed approach strengthens the 

robustness of feature selection, contributing to more informed clinical decisions and improved patient 

outcomes. 

 

3. Results and Discussion 

As discussed in Section 2.2, the LIME and SHAP importance scores for 15 relevant features from the 

Cirrhosis Patient Survival Prediction dataset are independently computed. These individual importance 

values are presented in Table 2. As detailed in Section 2.3, the final combined importance score for each 

feature fi  is calculated using the weighted sum approach: σ.Li + η.Si; where, Li and Si represent the 
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LIME and SHAP importance values for fi, and σ and η are the weights assigned to the LIME and SHAP 

contributions, respectively, with the constraint σ + η = 1. 

To determine the optimal values for σ and η, four metaheuristic algorithms PSO, WOA, GWO, and FA 

are employed, as explained in Section 2.3. After optimization, the combined feature importance scores 

for each of the 15 features are calculated and shown in Table 3. The corresponding optimal values of σ 

and η for each algorithm are also indicated in Table 3, enclosed in parentheses next to the method name. 

Table 2. Feature importance scores obtained from the XAI techniques LIME and SHAP 

Feature (fi) LIME importance score (Li) SHAP importance score (Si) 

Age 0.3505 0.0210 

Albumin 0.3993 0.0283 

Alk_Phos 0.0833 0.0088 

Ascites 0.0623 0.0896 

Bilirubin 0.1738 0.2215 

Cholesterol 0.1913 0.0300 

Copper 0.2571 0.2918 

Edema 0.0303 0.0527 

Hepatomegaly 1.0000 1.0000 

Platelets 0.3186 0.2698 

Prothrombin 0.6237 0.2308 

Sex 0.0000 0.0245 

SGOT 0.0497 0.0000 

Spiders 0.0666 0.0799 

Tryglicerides 0.2326 0.1037 

 

Furthermore, the sorted feature importance scores obtained from each of the four algorithms are 

visualized in the figures 1 to 4 using horizontal bar charts, where features are arranged from most to 

least important (from bottom to top). From Table 3 and the visualizations in the figures 1 to 4, it is 

evident that ‘Hepatomegaly’ consistently ranks as the most important feature across all four 

optimization techniques, with an importance score of 1.0 in each case. However, for other features, 
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importance rankings vary across the algorithms. 'Prothrombin', 'Platelets', 'Copper', and 'Albumin' 

consistently receive high importance values under PSO, WOA, and GWO. Another observation is that 

FA, which relies entirely on LIME for feature importance scoring, tends to assign lower importance to 

several features (such as 'Albumin' and 'Age') compared to the other three algorithms. 

Table 3. Optimized feature importance scores using metaheuristic algorithms 

Feature PSO (σ = 0.6227, 

η = 0.3773) 

WOA (σ = 0.0028, 

η =  0.9972) 

GWO (σ = 0.1962, 

η = 0.8038) 

FA (σ = 1,  

η = 0) 

Age 0.1453 0.3496 0.2859 0.0210 

Albumin 0.1683 0.3982 0.3265 0.0283 

Alk_Phos 0.0369 0.0831 0.0687 0.0088 

Ascites 0.0793 0.0624 0.0676 0.0896 

Bilirubin 0.2035 0.1739 0.1831 0.2215 

Cholesterol 0.0909 0.1908 0.1596 0.0300 

Copper 0.2787 0.2572 0.2639 0.2918 

Edema 0.0442 0.0304 0.0347 0.0527 

Hepatomegaly 1.0000 1.0000 1.0000 1.0000 

Platelets 0.2882 0.3185 0.3090 0.2698 

Prothrombin 0.3790 0.6226 0.5466 0.2308 

Sex 0.0153 0.0001 0.0048 0.0245 

SGOT 0.0188 0.0496 0.0400 0.0000 

Spiders 0.0749 0.0666 0.0692 0.0799 

Tryglicerides 0.1524 0.2322 0.2073 0.1037 
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Fig. 1: Graphical representation of feature importance scores obtained by applying PSO 

 

 

Fig. 2: Graphical representation of feature importance scores obtained by applying WOA 
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Fig. 3: Graphical representation of feature importance scores obtained by applying GWO 

 

Fig. 4: Graphical representation of feature importance scores obtained by applying FA 
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the four algorithms. In this table, the first column INTER(n) denotes the intersection of the top n 

features from each method (where n ranges from 1 to 15), the second column displays the specific set of 

features (S) that are common to that intersection, and the third column indicates the total number of 

features (nf) present within each of the resulting intersected sets. 

Table 4 illustrates how the intersection evolves as the number of top features considered from each 

method increases from 1 to 15. Notably, 'Hepatomegaly' is the only feature consistently ranked as the 

most important across all methods, as shown in the first three intersection levels INTER(1) to 

INTER(3). As the number of considered top features increases to five (i.e., nf = 5), additional four 

features 'Prothrombin', 'Platelets', 'Copper', and 'Triglycerides' are included in the set S (shown in row 7 

of Table 4), indicating their high relevance, albeit with slightly more variability than 'Hepatomegaly'. By 

the time the top 10 features are considered, a broader and more diverse set of features including 

'Bilirubin', 'Cholesterol', 'Albumin', 'Spiders' and, 'Ascites' appear in the intersection set, underscoring 

their collective importance. Since, Sex, and SGOT are assigned relatively low scores across all the four 

algorithms, they are included in S at the last intersection step i.e., INTER(15), indicating their limited 

relevance in predicting cirrhosis stages. 

 

Table 4. Intersection of top-ranked features identified by PSO, WOA, GWO, and FA 

INTER(n) Set of features (S) nf 

1 {'Hepatomegaly'} 1 

2 {'Hepatomegaly'} 1 

3 {'Hepatomegaly'} 1 

4 {'Hepatomegaly', 'Prothrombin'} 2 

5 {'Hepatomegaly', 'Platelets', 'Prothrombin'} 3 

6 {'Copper', 'Hepatomegaly', 'Platelets', 'Prothrombin'} 4 

7 {'Tryglicerides', 'Hepatomegaly', 'Platelets', 'Copper', 'Prothrombin'} 5 

8 {'Tryglicerides', 'Hepatomegaly', 'Platelets', 'Copper', 'Prothrombin'} 5 

9 {'Bilirubin', 'Tryglicerides', 'Hepatomegaly', 'Platelets', 'Copper', 'Prothrombin'} 6 

10 {'Bilirubin', 'Tryglicerides', 'Hepatomegaly', 'Platelets', 'Cholesterol', 'Copper', 

'Prothrombin'} 

7 

11 {'Bilirubin', 'Tryglicerides', 'Hepatomegaly', 'Platelets', 'Cholesterol', 'Albumin', 

'Copper', 'Spiders', 'Prothrombin'} 

9 
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12 {'Bilirubin', 'Tryglicerides', 'Ascites', 'Hepatomegaly', 'Platelets', 'Cholesterol', 

'Albumin', 'Copper', 'Spiders', 'Prothrombin'} 

10 

13 {'Bilirubin', 'Tryglicerides', 'Age', 'Ascites', 'Hepatomegaly', 'Platelets', 'Cholesterol', 

'Albumin', 'Copper', 'Spiders', 'Prothrombin'} 

11 

14 {'Bilirubin', 'Tryglicerides', 'Age', 'Alk_Phos', 'Ascites', 'Edema', 'Hepatomegaly', 

'Platelets', 'Cholesterol', 'Albumin', 'Copper', 'Spiders', 'Prothrombin'} 

13 

15 {'Bilirubin', 'Tryglicerides', 'Age', 'Alk_Phos', 'Ascites', 'Edema', 'Hepatomegaly', 

'Platelets', 'Cholesterol', 'Albumin', 'Copper', 'Spiders', 'Sex', 'SGOT', 'Prothrombin'} 

15 

 

4. Conclusion 

In this study, a robust and interpretable feature selection framework is proposed for liver cirrhosis stage 

prediction by combining explainable AI techniques—SHAP and LIME—with metaheuristic 

optimization algorithms—PSO, WOA, GWO, and FA. The integration of LIME and SHAP allows for 

the computation of feature importance scores from both local and global perspectives, while the use of 

optimization techniques ensures the derivation of optimal weight combinations that maximize their 

complementary strengths. The comparative analysis of feature rankings generated by the four 

metaheuristic algorithms, followed by their intersection, enhances the stability and reliability of the 

selected feature set. This intersection-based feature selection approach effectively mitigates the bias 

introduced by any single optimization method and identifies a robust set of clinically significant 

predictors. These findings should provide actionable insights for clinicians, contributing to more 

accurate and interpretable decision-making in cirrhosis staging. Future work may involve validating the 

proposed methodology across diverse medical datasets and exploring other feature attribution techniques 

to further enrich the model’s interpretability and generalizability. 
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